Finite element modeling to analyze TEER values across silicon nanomembranes
نویسندگان
چکیده
منابع مشابه
Finite Element Modeling of the Vibrational Behavior of Single-Walled Silicon Carbide Nanotube/Polymer Nanocomposites
The multi-scale finite element method is used to study the vibrational characteristics of polymer matrix reinforced by single-walled silicon carbide nanotubes. For this purpose, the nanoscale finite element method is employed to simulate the nanotubes at the nanoscale. While, the polymer is considered as a continuum at the larger scale. The polymer nanotube interphase is simulated by spring ele...
متن کاملAnalytical and Finite Element Modeling of Nanomembranes for Miniaturized, Continuous Hemodialysis
Hemodialysis involves large, periodic treatment doses using large-area membranes. If the permeability of dialysis membranes could be increased, it would reduce the necessary dialyzer size and could enable a wearable device that administers a continuous, low dose treatment of chronic kidney disease. This paper explores the application of ultrathin silicon membranes to this purpose, by way of ana...
متن کاملElectrical conductivity in silicon nanomembranes
Silicon nanomembranes (SiNMs) are very thin, large, free-standing or free-floating two-dimensional (2D) single crystals that can variously be flat, rolled into tubes, or made into any number of odd shapes, cut into millions of identical wires, used as conformal sheets, or chopped into tiny pieces. Because SiNMs are mostly surface or interface and little bulk, they have very interesting properti...
متن کاملBiaxially stretchable "wavy" silicon nanomembranes.
This Letter introduces a biaxially stretchable form of single crystalline silicon that consists of two dimensionally buckled, or "wavy", silicon nanomembranes on elastomeric supports. Fabrication procedures for these structures are described, and various aspects of their geometries and responses to uniaxial and biaxial strains along various directions are presented. Analytical models of the mec...
متن کاملSilicon nanomembranes for fingertip electronics.
We describe the use of semiconductor nanomaterials, advanced fabrication methods and unusual device designs for a class of electronics capable of integration onto the inner and outer surfaces of thin, elastomeric sheets in closed-tube geometries, specially formed for mounting on the fingertips. Multifunctional systems of this type allow electrotactile stimulation with electrode arrays multiplex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Microdevices
سال: 2018
ISSN: 1387-2176,1572-8781
DOI: 10.1007/s10544-017-0251-7